The user is asking about "LangGraph Currency Agent with A2A Protocol". Let me break down this request:
I should search for information about this specific implementation since it sounds like a specialized use case of LangGraph with a particular protocol for agent communication in the context of currency handling.
Let me search online to get the most up-to-date and relevant information about "LangGraph Currency Agent with A2A Protocol".
I'll search for the latest information on "LangGraph Currency Agent with A2A Protocol" to provide you with comprehensive details.
Based on my research, I'll provide a comprehensive overview of the LangGraph Currency Agent with A2A Protocol.
The LangGraph Currency Agent is a demonstration of how to build an AI agent for currency conversion using LangGraph framework that's exposed through Google's Agent-to-Agent (A2A) protocol. This implementation showcases how AI agents can communicate in a standardized way while providing specialized services.
LangGraph is a framework for building stateful, multi-actor applications with Large Language Models (LLMs). It enables the creation of complex agent workflows and maintains context across interactions.
The Agent-to-Agent (A2A) protocol is an open standard created by Google that enables different AI agents to communicate and collaborate using a standardized interface. It allows for:
The agent integrates with the Frankfurter API to provide real-time currency exchange information.
I'll explain the workflow using a diagram:
mermaid
sequenceDiagram
participant Client as A2A Client
participant Server as A2A Server
participant Agent as LangGraph Agent
participant API as Frankfurter API
Client->>Server: Send task with currency query
Server->>Agent: Forward query to currency agent
alt Complete Information
Agent->>API: Call get_exchange_rate tool
API->>Agent: Return exchange rate data
Agent->>Server: Process data & return result
Server->>Client: Respond with currency information
else Incomplete Information
Agent->>Server: Request additional input
Server->>Client: Set state to input-required
Client->>Server: Send additional information
Server->>Agent: Forward additional info
Agent->>API: Call get_exchange_rate tool
API->>Agent: Return exchange rate data
Agent->>Server: Process data & return result
Server->>Client: Respond with currency information
end
alt With Streaming
Note over Client,Server: Real-time status updates
Server->>Client: Looking up exchange rates...
Server->>Client: Processing exchange rates...
Server->>Client: Final result
end
Multi-turn Conversations- The agent can request additional information when needed
Real-time Streaming
Conversational Memory
ReAct Pattern Implementation
Currency Exchange Tool
cd samples/python/agents/langgraph
echo "GOOGLE_API_KEY=your_api_key_here" > .env
uv run .
(default port 10000) or with custom settings: uv run . --host 0.0.0.0 --port 8080
plaintext
User: "How much is 100 USD in EUR?"
Agent: "Based on the current exchange rate, 1 USD is equivalent to 0.92 EUR. Therefore, 100 USD would be approximately 92 EUR."
plaintext
User: "Convert 50 dollars"
Agent: "To which currency would you like to convert50 USD?"
User: "CAD"
Agent: "The current exchange rate is 1 USD = 1.4328 CAD. Therefore, 50 USD would be approximately 71.64 CAD."
When streaming is enabled, users receive real-time updates:
As part of the broader A2A ecosystem, the LangGraph Currency Agent can be integrated with other A2A-compatible agents:
The LangGraph Currency Agent with A2A Protocol represents an important implementation of standardized agent communication protocols. It demonstrates how specialized AI agents can be built with LangGraph and exposed through a common interface, enabling interoperability and collaboration between different AI systems. This approach is particularly valuable for creating modular, specialized AI agents that can work together seamlessly.
The user wants the previous content about "LangGraph Currency Agent with A2A Protocol" translated into Chinese. I'll translate the entire explanation, including all sections and technical details. I'll maintain the structure and formatting of the original text but convert everything into Chinese.
I'll translate:
I'll make sure to maintain proper markdown formatting throughout, including headers, bullet points, code blocks, etc.
LangGraph 货币代理是一个展示如何使用 LangGraph 框架构建货币转换 AI 代理的示例,该代理通过 Google 的代理到代理(Agent-to-Agent,A2A)协议进行暴露。这个实现展示了 AI 代理如何在提供专业服务的同时以标准化方式进行通信。
LangGraph 是一个用于构建有状态、多参与者应用程序的框架,它使用大型语言模型(LLMs)。它能够创建复杂的代理工作流并在交互过程中维护上下文。
代理到代理(A2A)协议是由 Google 创建的开放标准,它使不同的 AI 代理能够使用标准化接口进行通信和协作。它允许:
该代理集成了 Frankfurter API 以提供实时货币汇率信息。
我将使用图表来解释工作流程:
mermaid
sequenceDiagram
participant Client as A2A 客户端
participant Server as A2A 服务器
participant Agent as LangGraph 代理
participant API as Frankfurter API
Client->>Server: 发送带有货币查询的任务
Server->>Agent: 将查询转发给货币代理
alt 完整信息
Agent->>API: 调用 get_exchange_rate 工具
API->>Agent: 返回汇率数据
Agent->>Server: 处理数据并返回结果
Server->>Client: 响应货币信息
else 不完整信息
Agent->>Server: 请求额外输入
Server->>Client: 状态设置为需要输入
Client->>Server: 发送额外信息
Server->>Agent: 转发额外信息
Agent->>API: 调用 get_exchange_rate 工具
API->>Agent: 返回汇率数据
Agent->>Server: 处理数据并返回结果
Server->>Client: 响应货币信息
end
alt 流式传输
Note over Client,Server: 实时状态更新
Server->>Client: 正在查询汇率...
Server->>Client: 正在处理汇率...
Server->>Client: 最终结果
end
多轮对话
实时流式传输
对话记忆
ReAct 模式实现
货币兑换工具
cd samples/python/agents/langgraph
echo "GOOGLE_API_KEY=your_api_key_here" > .env
uv run .
(默认端口 10000)或使用自定义设置:uv run . --host 0.0.0.0--port 8080
plaintext
用户:"100 美元兑换成欧元是多少?"
代理:"根据当前汇率,1 美元等于 0.92 欧元。因此,100 美元大约是 92 欧元。"
plaintext
用户:"兑换 50 美元"
代理:"您想将 50 美元兑换成哪种货币?"
用户:"加元"
代理:"当前汇率为 1 美元 = 1.4328 加元。因此,50 美元大约是 71.64 加元。"
启用流式传输时,用户会收到实时更新:
作为更广泛的 A2A 生态系统的一部分,LangGraph 货币代理可以与其他兼容 A2A 的代理集成:
LangGraph 货币代理与A2A 协议代表了标准化代理通信协议的重要实现。它展示了如何使用 LangGraph 构建专业AI 代理并通过通用接口暴露,实现不同 AI 系统之间的互操作性和协作。这种方法对于创建能够无缝协作的模块化、专业 AI 代理特别有价值。